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EXTERNAL ELLIPTICAL CRACK IN ELASTIC SOLID]

by

M. K. Kassir? and 6. C. Sih3

ABSTRACT

Potential functions are developed for both symmetric and
antisymmetric three-dimensional problems of an infinite elastic
solid containing a flat crack covering the outside of an el-
lipse. The knowledge of these functions permits an examination
of the stress and displacement fields everywhere in the cracked
solid as well as in a toroidal region around the crack border.
Stress-intensity factors kj (j=1,2,3) corresponding to the three
basic modes of fracture are obtained. The results of this paper,
coupled with those found previously by the authors for the prob-
lem of internal elliptical crack, are essential in making approx-
imate estimates of kj - values for solids with arbitrarily-shaped

planar cracks.

]The work reported herein was supported by the National Aero-
nautics and Space Administration under Grant NGR-39-007-025 with
Lehigh University.

2Lecturer, Department of Civil Engineering, The City College,
New York, New York.

3Professor of Mechanics, Lehigh University, Bethlehem, Pennsyl-
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INTRODUCTION

In the examination of fracture failures of solids weakened
by planar cracks, it is unlikely that the configuration of the
initial starting crack would be an ellipse or any other ideal-
ized shape conforming to the existing curvilinear coordinate
systems. Since the mathematical problem of cracks in three-
dimensions involving complicated crack geometry prohibits any
analytical solution, it is useful to solve some relatively
simple, but basic, component crack problems whose solutions
may provide rough estimates of the fracture behavior of irreg-
ularly-shaped cracks. The component problems may consist of
an internal and external elliptical crack embedded in the solid.
By varying the ellipticity of the internal and external crack,
it is possible to approximate the periphery4 of an arbitrarily-
shaped crack by joining a sequence of segments of the elliptical

boundary.

Green and Sneddon [1]5 have discussed the symmetric problem
of the internal elliptical crack while Kassir and Sih [2] have
solved the antisymmetric problem dealing with the same geometry.
In this paper, exact solutions to the problem of two half-spaces
connected through an elliptically-shaped region are given. The

two half-spaces are either pulled apart symmetrically or sheared

4It is assumed that the periphery of the crack is sufficiently
smooth and contains no sharp edges.

5Numbers in brackets designate references at end of paper.

-2-



apart antisymmetrically with respect to the crack plane. With
the help of the limiting forms of ellipsoidal to polar coordi-
nates defined locally from the crack border as established by
Kassir and Sih [2], stress-intensity factors are calculated

and the results are presented graphically.

STATEMENT OF THE PROBLEM

In the formulation of boundary problems of elliptic crack,
it is expedient to use ellipsoidal coordinates (£,n,z) which
are defined as the roots of the equation in s as

X2+.y2 +£:]
at+s bZ+s S

The restrictions placed on £, n, ¢ are
-a2 <g<-b2<n<0<E<w

Referring to the work of Kassir and Sih [2-4], they have pointed
out that a wide variety of three-dimensional problems involving
discontinuity in the shape of an ellipse can be solved by making
use of potentials (satisfying the Laplace equation in the vari-

ables x, y, z) in the form

= ds
I(x,y,z) = [ alw(s)] (1)
g /Q(s)
where
) x 2 2 22
o(s) =1 - 3755 -~ p%Fs " 5
and Q(s) = s(s+a2)(s+b2). Without exception, harmonic functions
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of the type shown in equation (1) will also be employed in the
present treatment. In elastostatics, these functions are asso-

ciated with the components u_, u_, u

X y 2 of the displacement vector

u such that u satisfies the Navier equation

v2u + 112v yv.u = 0 (2)

Here, v is Poisson's ratio and the body forces are assumed to

be absent.

By an "external elliptical crack", it is meant the union of
two half-spaces across a plane in the shape of an ellipse. Let
this plane region © (x2/a? + y2/b2 = 1, z = 0) be located in
the xy-plane so that the z-axis is directed normally to £ and
the origin of the cartesian coordinate system coincides with
the center of the ellipse. In terms of ellipsoidal coordinates,
the point (x,y,o0) inside and outside the region £ can be jden-
tified by £ = 0 and n = 0, respectively. This problem will be
split into two parts; one symmetric and the other antisymmetric
with respect to the plane z = 0. In each case, the problem re-
duces to one of selecting the appropriate harmonic potentials

that satisfy the prescribed boundary conditions.

SYMMETRIC PROBLEM

When the stress distribution is symmetric with respect to
the plane z = 0, the equilibrium of the cracked solid can be

considered under the following conditions




The resultant normal force6 acting on the elliptical region I

is designated by

P =] (o) dxdy "

For this problem, Boussinesq's solution of the elastic
equations of equilibrium, equation (2), can be employed. That

is

_ 5f 32f
UX = (]-2\)) 7"' Z X9z °
u = (1-20) 2L 4 2 22f (5)
y 3y ayaz
_ of 32fF
u, = - 2(1-v) sz v 2377

in which the harmonic potential f(x,y,z) satisfies the Laplace

equation
v2f(x,y,z) = 0

The relevant stress components corresponding to the displace-

ments in equation (5) are

6The specification of uniform stress at infinity should be
avoided since it leads to unbounded tensile force across the
region .
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3 3 2 5 3f
Oz ., 3°f vz _, 3°f Y2z _ a<f . s 331 (6)
2u ax3z?% ’ 2y d3ydszs ’ 2y 9z2 3z3

with y being the shear modulus of the elastic solid. On the

plane z = 0, it is obvious that the shear stresses o and

XZ
cyz vanish while the normal stress 9, becomes
- 32f _
GZZ--ZHE—Z—Z’Z_O (7)

As a special case of equation (1) with a[w(s)] = A (const.),

let 3f/3z be equal to

R - LX (8)
£ /0(s)

In equation (8), u is a variable related to £ by the relation

2

£ = a2 (sn “u - 1)

and hence it takes the value of K(k) at ¢ = 0, where K(k) is
the complete elliptic integral of the first kind associated

with the argument k2 = 1 - (b/a)2. In addition, since

22f _ _ 2A[nc(a2+g)(b2+£)]'/? (9)
9z2 ab(e-n)(e-1z)

o, vanishes automatically for n = 0. The only remaining con-
dition, u, = 0 for £ = 0, in equation (3) can be satisfied by

rewriting u, in equation (5) as

> 2
u, = - 2(1-v) %; + 2(1-v) A [ ds_ 4 é—;

z o v/Q(s)




The additional term corresponds to a rigid body displacement
and will not affect the state of stress. Now, inserting equa-

tion (9) into (7) and the result subsequently into equation

(4) yield
p = Juh dxdy 7 = 8muA (10)
ab z (1-x2/a2-y?2/b2?)
and thus
_ P
A = 87y

The solution is essentially complete. Once 3f/3z is known,
the stresses and displacements throughout the elastic solid

can be calculated.

ANTISYMMETRIC PROBLEM

Suppose that the stresses in the solid are distributed

antisymmetrically with respect to the plane z = 0, then

(11)

In this case, the resultant shear forces transmitted across =
in the x- and y-directions will be denoted by

Q=117 (oXZ) dxdy, and R dxdy (12)
X

£=0 z £=0

]
—
—

—
Q
<
N
~

A solution of Navier's equations that gives zero normal
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stress 0,z everywhere in the plane z = 0 can be written in

terms of two harmonic potentials:

_ 5 39 _ o, 7 3G 4, _ , 3G
Uy = 2 337 2v £ ax 42 7 3%
_ o, 3h _ T 96 _ ., 36
uy = 2 Y 2v £ 5y dz z 5y (13)

u. = (1-2v) G - z %%

The function G(x,y,z) stands for

in which g(x,y,z) and h(x,y,z) satisfy

v2g(x,y,z) = 0, v2h(x,y,z) = 0

From the stress-displacement relations, it is found that

2 2 2 2 2
Oz i} 3°g _, 346G Ovz i 3¢h ., 346G O,y ., 346G (12)
2y 9z2 ax3z’ 2y 3z°% dyaz’ 2u 322

The stress components o_,, o

X yy? and °xy can be found in the

same way.

First, let the elliptical connection ¢ be sheared along the

major axis with R = 0. In such a case, it is appropriate to set

29 -8 g dS_ | h(x,y,z) = 0 (15)
g vQ(s) -8-




from which it can be readily verified that vz and Syz vanish
outside the region £ at z = 0. As in the symmetric problem,
the displacements Uy and uy in equation (13) are modified into

the forms

0 £=0
(16)
- _ oy, 1 3%9 T (3% _, 3%
uy 2v £ e dz + 2v | (axay)£=0 dz - z x5y
such that u, = uy = 0 for £ = 0, and the stresses in equation

(14) remain unchanged. Having satisfied all the boundary con-
ditions, the constant B is evaluated from equation (12) with

o = 0 for £ = 0. The result is

B = - -4 (17)

If the action of shear is directed along the minor axis of

the ellipse x2/a2 + y2/b2 = 1, then Q = 0 in equation (12), and

g(x,y.z) = 0, 2= ¢ / de (18)

Similarly, expressions pertaining to rigid body motions may

be added onto Uy and u_, so as to satisfy equation (11). The

Y

constant C is found to be
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C = - (19)

It is clear that the two foregoing results may be super-
posed to render the complete solution to the problem of an ex-
ternal elliptical crack sheared in its own plane along any

given direction.

CRACK-EXTENSION FORCE

To compute the strain-energy change for a small opening
of the crack boundary or the force tending to cause crack ex-
tension, it is pertinent to obtain asymptotic expansions of
the appropriate stress components about the crack border. In
this way, the crack stress-field parameters kj (j=1,2,3) can
be determined and the crack-extension forces Gj (j=1,2,3) can

then be found from the re]ationships7

_1(1-v2) 4,

_on(1-v2) .,
1= E 1° k

= _ TT(]+\)) k2
2 E 2’

G 3° TF K3

G (20)

where E is Young's modulus of elasticity.

The parameters kj’ commonly known as the stress-intensity

factors, can be evaluated from the formulas

ko = 1im V2r (o
L ZZ% 529

7Kassir and Sih [2] have shown that the combined state of plane
strain and of anti-plane deformation always prevail near the
border of an embedded crack under arbitrary loadings.
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k, = tim v¥2r (o__)
2 o NZ g=0
(21)
ko, = 1im V2r (o,_)
3 rso tz2% =0

The shear stresses Tz and Tty act in the directions normal and

tangent to the ellipse x2/a? + y2/b2 = 1 and they can be asso-

ciated with the rectangular components Tyz and Oyz by means of

the following transformations [2]

. . - 1/2
= 2 2 2 2
L. (boXZ cos ¢ + aoyz sin ¢)(a2sin2¢ + b2cos?¢)
(22)
o = (- ao sin ¢ + bo cos ¢)(a2sin2¢ + b2cos2¢)" 1/2
tz XZ yz

More precisely, the set of axes n, t, and z are always situated
along the binormal, tangent, and principal normal of the crack
boundary, respectively. The angle ¢ is referenced from the
major axis of the ellipse as illustrated in Figures 1 and 2.

In equation (21), the radial distance r is measured from the
crack front in the nz-plane and the angle 8 from the elliptical

region .

In view of equation (21), the evaluation of kj requires

only the (1/V/2r) - terms of o » and o__ because the non-

nz* %tz
singular terms vanish in the limit as r > 0. These singular

terms can be found from a knowledge of the 1limiting forms of
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)8

(esnsc) to (r,e

£ = 2abr (sin 7) (a2sin2¢ + b2cos2¢)

0.2 - 1/2
n = - 2abr (cos 7) (a2sin2¢ + b2cos2¢) (23)
r = - (a%sin2¢ + b2cos?y¢)

(a) Opening Mode

With the aid of equation (23), equation (9) may be
inserted into equation (7) to obtain
p - Vh

(o,,) = (a2sin2¢ + b2cos2¢) — + 0(r%) (24)
8=0 27v/ab V2r

From equation (21), the stress-intensity factor k] for the

opening mode is found9:

b - 1/4
k] = (a2sin2¢ + b2cos?4) (25)
2nv/ab

For a circular connection, a = b, and equation (25) simplifies

to

8For details, refer to the paper by Kassir and Sih [2], equa-
tion (55). Their definition of the angle 6 is equal to =
minus that given in equation (23).

9This result was simply stated by Westmann [5] without any de-
tailed derivations.
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P

21ra3/2

The variations of k, in equation (25) with the angle ¢ for
different values of a/b are plotted in Figure 1. Note that k]
attains its maximum value at ¢ = 0, n, where the crack boundary
intersects the major axis of the ellipse. Based on the notion
of brittle fracture theory, if the tension P is sufficiently
large, the elliptical bond should spread inward and tend to
produce a circular bond of radius b. Any further crack propaga-

tion will reduce the radius of the circular bond to the point

of complete separation of the solid into two half-spaces.

This is contrary to the situation of an internal ellip-
tical crack. It was shown by Irwin [6] that the maximum k]-
value occurs at ¢ = * n/2. Hence, an internal elliptical crack
will propagate outward into the solid and tend to produce a
penny-shaped crack of radius a, the major semiaxis of the el-
lipse. A graphical representation of Irwin's result is given

by Kassir and Sih [2].

From the results of the elliptical crack and bond prob-
lems, estimates can be made for stress-intensity factor for
quite arbitrary crack-front contours in solids under tensile

loads.

(b) Shearing And Tearing Modes

The kj-factors (j=2,3) for an elliptical connection

sheared along the major axis can be computed by the same pro-
-13-




cedure. The results of combining equations (14), (15), (22),

and (23) are

-3 \/E-cos (a?sin2¢ + b2cos? )- e - 0(r?)
Sz - 3 é in2g cos%4¢ o
(26)
— - 3/4
_ Q a . P 9 2 L 0
o = - = sin ¢ (a2%sin2¢ + b2co0s24) — + 0(r")
tz 2T *jb /o
from which kj (j=2,3) in equation (21) can be deduced:
- 3/4
k, = %; \/g cos ¢ (a%sin2¢ + b2cos2¢)
(27)
- 3/4

kg = - %; \[% sin ¢ (a2sin?¢ + b2co0s2¢)

If a = b, equation (27) reduces to the kj-va1ues of a penny-

shaped connection given by

k. = Qcos ¢ | _ _Qsing
2 3/2 > "3 3/2
2rTa 2ma
Figures 2 and 3 show the results of k, and ks in equation (27)
in the form of curves. It is seen that k2 decreases in magnitude
as the angle ¢ is increased from 0° to 90° at which k2 vanishes.
On the other hand, since a state of pure shearing prevails at
¢ = 0°, k3 = 0. At other points of the crack border, both k2

and k3 are present. However, their combined effect leading to

brittie fracture is not known as a priori. For this reason,
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the shape into which the elliptical bond would spread under

the action of shear can only be determined experimentally by

assuming that the function

f(k,,k

2’
reaches certain critical value at the onset of crack propagation.

When the elliptical bond is sheared along the minor
axis with resultant force R, the same procedures may be employed

to find the stress-intensity factors

R 3 - 3/4
k2 = 5 _jg sin ¢ (a2sin2¢ + b2co0s24)

™

R jB- 2¢in2 2epc24) 3/4
k3 = 50 J3 €05 ¢ (a?sin2¢ + b2co0s52¢)

Equation (28) is strictly analogous to equation (27) and thus

no separate comment is required.
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TITLE OF FIGURES

Figure 1 - Stress-Intensity Factor For Opening Mode.
Figure 2 - Stress-Intensity Factor For Shearing Mode.

Figure 3 - Stress-Intensity Factor For Tearing Mode.
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